• English
    • Persian
  • Persian 
    • English
    • Persian
  • ورود
مشاهده آیتم 
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
JavaScript is disabled for your browser. Some features of this site may not work without it.

Markerless Respiratory Tumor Motion Prediction Using an Adaptive Neuro-fuzzy Approach

Thumbnail
نمایش/بازکردن
404-1408-1-PB.pdf (1.084Mb)
تاریخ
2018
نویسنده
Rostampour, N
Jabbari, K
Esmaeili, M
Mohammadi, M
Nabavi, S
Metadata
نمایش پرونده کامل آیتم
چکیده
Background: Accurate delivery of the prescribed dose to moving lung tumors is a key challenge in radiation therapy. Tumor tracking involves real-time specifying the target and correcting the geometry to compensate for the respiratory motion, that's why tracking the tumor requires caution. This study aims to develop a markerless lung tumor tracking method with a high accuracy. Methods: In this study, four-dimensional computed tomography (4D-CT) images of 10 patients were used, and all the slices which contained the tumor were contoured for all patients. The first four phases of 4D-CT images which contained tumors were selected as input of the software, and the next six phases were considered as the output. A hybrid intelligent method, adaptive neuro-fuzzy inference system (ANFIS), was used to evaluate motion of lung tumor. The root mean square error (RMSE) was used to investigate the accuracy of ANFIS performance for tumor motion prediction. Results: For predicting the positions of contoured tumors, the averages of RMSE for each patient were calculated for all the patients. The results showed that the RMSE did not have a major variation. Conclusions: The data in the 4D-CT images were used for motion tracking instead of using markers that lead to more information of tumor motion with respect to methods based on marker location. آ© 2018 Journal of Medical Signals & Sensors.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/54938
Collections
  • Published Articles

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV
 

 

مرور

همه مخزنجامعه ها و مجموعه هابراساس تاریخ انتشارنویسنده هاعنوانهاموضوعاین مجموعهبراساس تاریخ انتشارنویسنده هاعنوانهاموضوع

حساب من

ورودثبت نام

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV