• English
    • Persian
    • English
    • Persian
  • Persian 
    • English
    • Persian
    • English
    • Persian
  • ورود
مشاهده آیتم 
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
JavaScript is disabled for your browser. Some features of this site may not work without it.

A simple QSPR model to predict aqueous solubility of drugs

Thumbnail
تاریخ
2010
نویسنده
Shayanfar, A
Fakhree, MAA
Jouyban, A
Metadata
نمایش پرونده کامل آیتم
چکیده
Aqueous solubility of a drug/drug candidate is essential data in drug discovery, and an in silico method for predicting the aqueous solubility of drug candidates provides a valuable tool to speed up the process of drug discovery and development. This paper describes a simple quantitative structure property relationship (QSPR) model for predicting the aqueous solubility of drugs which is validated by cross-validation methods. A data set of 220 drug or drug like molecules as a train set was employed and the accuracy of the proposed QSPR model was compared with those of the general solubility equation (GSE) and the linear solvation energy relationship (LSER). Also, a test set containing the aqueous solubility of 75 official drugs which are structurally and physico-chemically diverse, was proposed to compare the accuracy of the aqueous solubility prediction models as a reference data set. The developed model is: log S(w) = -1.120E - 0.599 ClogP, in which is the molar aqueous solubility of a drug, E is the excess molar refraction and ClogP is the computed logarithm of partition coefficient of drug. The E and ClogP values for a drug candidate could be computed using Pharma-Algorithms software. Average absolute error (AAE) and mean percentage deviation (MPD) were used as comparison criteria. The proposed QSPR provided better AAE and MPD for solubility prediction in comparison with GSE and LSER models.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/50537
Collections
  • Published Articles

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV
 

 

مرور

همه مخزنجامعه ها و مجموعه هابراساس تاریخ انتشارنویسنده هاعنوانهاموضوعاین مجموعهبراساس تاریخ انتشارنویسنده هاعنوانهاموضوع

حساب من

ورودثبت نام

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV