• English
    • Persian
    • English
    • Persian
  • Persian 
    • English
    • Persian
    • English
    • Persian
  • ورود
مشاهده آیتم 
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
JavaScript is disabled for your browser. Some features of this site may not work without it.

A framework for diagnosing cervical cancer disease based on feedforward MLP neural network and ThinPrep histopathological cell image features

Thumbnail
تاریخ
2014
نویسنده
Sokouti, B
Haghipour, S
Tabrizi, AD
Metadata
نمایش پرونده کامل آیتم
چکیده
In this paper, Levenberg-Marquardt feedforward MLP neural network (LMFFNN) was proposed to classify cervical cell images obtained from 100 patients including healthy, low-grade intraepithelial squamous lesion and high-grade intraepithelial squamous lesion cases. This neural network along with extracted cell image features is a new model for cervical cell image classification. The semiautomated cervical cancer diagnosis system is composed of two phases: image preprocessing/processing and feedforward MLP neural network. In the first stage, image preprocessing is done to reduce the existing noises without lowering the resolution. After that, image processing algorithms were applied to manually cropped cell images to achieve a linear plot which includes real components, were used as LMFFNN inputs for classification of cervical cell images. Based on the results, cervical cell images were classified successfully with 100 % correct classification rate using the proposed method. Moreover, the rates of sensitivity and specificity were calculated as 100 % using LMFFNN method. It was shown there was a good agreement between the expert decision and values gained from the ANN model.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/48944
Collections
  • Published Articles

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV
 

 

مرور

همه مخزنجامعه ها و مجموعه هابراساس تاریخ انتشارنویسنده هاعنوانهاموضوعاین مجموعهبراساس تاریخ انتشارنویسنده هاعنوانهاموضوع

حساب من

ورودثبت نام

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV