• English
    • Persian
  • Persian 
    • English
    • Persian
  • ورود
مشاهده آیتم 
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning-based Signal Processing Using Physiological Signals for Stress Detection

Thumbnail
تاریخ
2015
نویسنده
Ghaderi, A
Frounchi, J
Farnam, A
Metadata
نمایش پرونده کامل آیتم
چکیده
Stress is a common part of daily life which most people struggle in different occasions. However, having stress for a long time, or a high level of stress will jeopardize our safety, and will disrupt our normal life. Consequently, performance and management ability in critical situations degrade significantly. Therefore, it is necessary to have information in stress cognition and design systems with the ability of stress cognition. In this paper a signal processing approach is introduced based on machine learning algorithms. We used collected biological data such as Respiration, GSR Hand, GSR Foot, Heart Rate and EMG, from different subjects in different situations and places, while they were driving. Then, data segmentation for various time intervals such 100, 200 and 300 seconds is performed for different stress level. We extracted statistical features from the segmented data, and feed this features to the available classifier. We used KNN, K-nearest neighbor, and support vector machine which are the most common classifiers. We classified the stress into three levels: low, medium, and high. Our results show that the stress level can be detected by accuracy of 98.41% for 100 seconds and 200 seconds time intervals and 99% for 300 seconds time intervals.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/48180
Collections
  • Published Articles

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV
 

 

مرور

همه مخزنجامعه ها و مجموعه هابراساس تاریخ انتشارنویسنده هاعنوانهاموضوعاین مجموعهبراساس تاریخ انتشارنویسنده هاعنوانهاموضوع

حساب من

ورودثبت نام

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV