• English
    • Persian
  • Persian 
    • English
    • Persian
  • ورود
مشاهده آیتم 
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cisplatin release from dual-responsive magnetic nanocomposites

Thumbnail
تاریخ
2016
نویسنده
Kurd, K
Khandagi, AA
Davaran, S
Akbarzadeh, A
Metadata
نمایش پرونده کامل آیتم
چکیده
Background: The combination of hyperthermia and controlled drug delivery is a very promising recent effort in cancer therapy. The aim of this study is to synthesize and characterize a dual pH/thermal-responsive composite nanoparticle that acts as a cisplatin carrier, and to evaluate its release profile at different pH and temperature conditions relevant to the physiological and cancerous environment during hyperthermia. Methods: Poly (n-isopropyl acrylamide-methacrylic acid-hydroxy ethyl methacrylate) (P (NIPAAM-MAA-HEM)) was synthesized by emulsion polymerization. Fe3O4 magnetic nanoparticles (MNPs) and cisplatin were loaded onto the nanogel, by the swelling method and the conjugation of cisplatin with the -COOH group of MAA, respectively. The chemical and morphological properties of the drug-loaded composite nanoparticle and its profile of drug release at pH levels of 7.4 (physiological pH), 6.8 (tumor extracellular pH), and 5.3 (endosomal pH), and at temperatures of 37 degrees C (physiological) and 43 degrees C (hyperthermia), were studied. Results: The result shows that the synthesized nanogel and nanocomposite were almost pure and were of an appropriate size and stability. Magnetic saturation was at a position appropriate for the production of enough heat during hyperthermia. A high level of drug release under conditions of low pH and high temperature was observed. Conclusion: This result suggests that the dual pH/temperature-responsive P (NIPAAM-MAA-HEM) magnetic nanocomposite can be very effective in hyperthermia and controlled cisplatin delivery.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/46982
Collections
  • Published Articles

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV
 

 

مرور

همه مخزنجامعه ها و مجموعه هابراساس تاریخ انتشارنویسنده هاعنوانهاموضوعاین مجموعهبراساس تاریخ انتشارنویسنده هاعنوانهاموضوع

حساب من

ورودثبت نام

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV