• English
    • Persian
  • Persian 
    • English
    • Persian
  • ورود
مشاهده آیتم 
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantitative Structure Activity Relationship (QSAR) of Methylated Polyphenol Derivatives as Permeability Glycoprotein (P-gp) Inhibitors: A Comparison of Different Training and Test Set Selection Methods

Thumbnail
تاریخ
2017
نویسنده
Ghaemian, P
Shayanfar, A
Metadata
نمایش پرونده کامل آیتم
چکیده
Background: P-glycoprotein (p-gp) is one of the membrane transporter protein belong to the ATP-binding cassette which can efflux drugs to the out of the cell and cause drug resistance. Therefore, designing of new compounds with p-gp inhibitory activity can reduce drug resistance. Objective: Our aim is to introduce quantitative structure activity relationship (QSAR) models for predicting the p-gp inhibitory activity of the methylated polyphenol derivatives. Methods: Structure and activity of 52 compounds were obtained from the literature. Structure of the molecules were optimized using Hyperchem software, and molecular descriptors were calculated by the Dragon software. For external validation of the QSAR models, the data split to training and test sets using random sampling and rational methods (activity sampling and Kennard-Stone algorithm). The QSAR models were established by using both linear methods, i.e., multiple linear regression (MLR) and non-linear methods, i.e., artificial neural networks (ANN) and support vector machine (SVM). Results: Non-linear models and rational training and test set selection methods can introduce better results for predicting the activity. Conclusion: The developed QSAR models were able to predict the p-gp inhibitory activity of the studied compounds with good accuracy.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/46145
Collections
  • Published Articles

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV
 

 

مرور

همه مخزنجامعه ها و مجموعه هابراساس تاریخ انتشارنویسنده هاعنوانهاموضوعاین مجموعهبراساس تاریخ انتشارنویسنده هاعنوانهاموضوع

حساب من

ورودثبت نام

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV