• English
    • Persian
  • Persian 
    • English
    • Persian
  • ورود
مشاهده آیتم 
  •   صفحه اصلی مخزن دانش
  • School of Pharmacy
  • Theses(P)
  • مشاهده آیتم
  •   صفحه اصلی مخزن دانش
  • School of Pharmacy
  • Theses(P)
  • مشاهده آیتم
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of Graphene Quantom dot on determination of ِDoxorubicin on biological samples

Thumbnail
نمایش/بازکردن
heashemzade omomi.pdf (2.390Mb)
تاریخ
2015
نویسنده
Hashemzadeh, Nastaran
Metadata
نمایش پرونده کامل آیتم
چکیده
Introduction: Nowadays anticancer drugs which used as chemotherapy regimen for patients are become more useful. The development of an accurate and repeatable method for determination of these drugs, will improve our understanding of their role in the treatment process. One of the common methods of determining the trace amount of these drugs is electrochemical methods. According to the importance of these methods in the analysis of drugs, in the present study graphene quantum dots (GQDs) used as active ingredient in the preparation of electrochemical sensors. Application of prepared electrochemical sensor for the detection and quantification of doxorubicin in biological samples were studied. Aim: Developing an electrochemical sensor based on graphene quantum dots and its application for the detection and determination of doxorubicin (DOX) in biological samples. Methods: In this study, GQDs were synthesized by pyrolyzing citric acid in alkaline solution.The UV–Vis spectroscopy, X-ray diffraction (XRD), transition electron microscopy (TEM), Fourier transform infrared (Ft-IR) spectroscopy, Atomic force microscopy (AFM) and cyclic and differential pulse voltammetric techniques were used for characterizing synthesized GQDs. The electrochemical behavior of GQD modified glassy carbon electrode (GQD-GCE) was studied using cyclic voltammetry (CV) technique. The electrochemical behavior of DOX was investigated at the GQD-GCE in phosphate buffer solution (PBS), using differential pulse voltammetry technique (DPV). Results and Conclusion: electrochemical behavior GQD-GCE was studied using CV and DPV. DPV was used to evaluate the analytical performance of DOX in the presence of PBS (pH 4) and good limit of detection was obtained by proposed sensor. The results revealed that GQD promotes the rate of oxidation by increasing the peak current. Finally, the applicability of the proposed method was described to the direct assays of spiked human plasma.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/66061
Collections
  • Theses(P)

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV
 

 

مرور

همه مخزنجامعه ها و مجموعه هابراساس تاریخ انتشارنویسنده هاعنوانهاموضوعاین مجموعهبراساس تاریخ انتشارنویسنده هاعنوانهاموضوع

حساب من

ورودثبت نام

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV