• English
    • Persian
  • Persian 
    • English
    • Persian
  • ورود
مشاهده آیتم 
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization of back-propagation neural networks architecture and parameters with a hybrid PSO/SA approach

Thumbnail
تاریخ
2009
نویسنده
Zarei, M
Dzalilov, Z
Metadata
نمایش پرونده کامل آیتم
چکیده
Determining the architecture and parameters of neural networks is an important scientific challenge. This paper reports a new hybrid optimization method for optimization of back- propagationneural networks architectureand parameters with a high accuracy. We use particle swarm optimization that has proven to be very effective and fast and has shown to increase the efficiency of simulated annealing when applied to a diverse set of optimization problems. To evaluate the proposed method, we employ the PIMA dataset from the Universityof California machine learning database. Compared with previous work, we show superior classification accuracy rates of the developed approach.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/57085
Collections
  • Published Articles

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV
 

 

مرور

همه مخزنجامعه ها و مجموعه هابراساس تاریخ انتشارنویسنده هاعنوانهاموضوعاین مجموعهبراساس تاریخ انتشارنویسنده هاعنوانهاموضوع

حساب من

ورودثبت نام

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV