• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanomagnet-based detoxifying machine: An alternative/complementary approach in HIV therapy

Thumbnail
View/Open
nanomagnetbased-detoxifying-machine-an-alternativecomplementary-approach-in-hiv-therapy-2155-6113.1000304.pdf (1.142Mb)
Date
2014
Author
Seidi, K
Eatemadi, A
Mansoori, B
Jahanban-Esfahlan, R
Farajzadeh, D
Metadata
Show full item record
Abstract
Although the use of highly active antiretroviral therapy (HAART) hampers HIV-1 replication, it is not yet a cure. The main obstacle to HAART-mediated HIV eradication is the latent reservoir of virally infected cells, which is the source of fast viral rebound in patients that stopped therapy. Patients must therefore have lifelong HAART, which is expensive and in long term the many side effects undermine successful treatment. Attempts to eradicate latent reservoir have focused on reactivating latent proviruses. However, killing the infected cells after virus reactivation, which is pivotal for elimination of the reservoir, has not been addressed. In this paper, we proposed a novel complementary approach, which we have called the "Nanomagnet-Based Detoxifying Machine (NBDM)" and, is able to eliminate the virus load in the bloodstream of the patients. In this regard, our proposed nanomagnets (Fe3O4-PLGA-PEG-gp120 AbaptamerMIP) will be able to bind to any gp120 markers in the blood circulation. The nanomagnets will trap the virus particles in a dialysis column during the hemodialysis and under a strong electromagnetic field. Therefore, each nanomagnets will serve as a hook to capture millions of virus particles out of the patient's body. In the present research, we suggested the application of the Molecularly Imprinted Polymers (MIPs), because they could simply be synthesized through self-assembling approaches without any need for highly expensive Ab/aptamers. The synthesized MIPs have the potential to mimic the behavior of an antibody/aptamer raised against one of the main antigenic determinants of the virus, such as gp120. NBDM provides a simple but very beneficial system to detoxify the blood from both the viruses and nanoparticles. In conclusion, we think that it could be used as complementary therapy beside the HAART to improve the CD4+ count and disease prognosis without any concern for side effects. This is a simple, cost effectiveness, easy to handle, convenient for the patients, non-invasive, and effective approach that could be extended for a large spectrum of human diseases other than HIV. © 2014 Seidi K, et al.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/56973
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV