• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanical and biological performance of printed alginate/methylcellulose/halloysite nanotube/polyvinylidene fluoride bio-scaffolds

Thumbnail
Date
2018
Author
Roushangar Zineh, B
Shabgard, MR
Roshangar, L
Metadata
Show full item record
Abstract
Use of artificial cartilage due to its poor regenerative characteristics is a challenging issue in the field of tissue engineering. In this regard, three-dimensional printing (3D) technique because of its perfect structural control is one of the best methods for producing biological scaffolds. Proper biomaterials for cartilage repairs with good mechanical and biological properties and the high ability for 3D printing are limited. In this paper, a novel biomaterial consisting of Alginate (AL), Methylcellulose (MC), Halloysite Nanotube (HNT), and Polyvinylidene Fluoride (PVDF) was printed and characterized for cartilage scaffold applications. Calcium chloride (CaCl2) was used as a crosslinker for biomaterial after printing. Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDX), X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), tensile and compressive tests, chondrocytes seeding, cells staining, and MTT assay were carried out in the present work. The results show that in constant concentrations of AL, MC, and PVDF (40 mg/ml AL, 30 mg/ml MC, and 1% PVDF) when concentration of HNT increased from 20 mg/ml (S2) to 40 mg/ml (S14) tensile strength increased from 164 up to 381 kPa and compressive stress increased from 426 up to 648 kPa. According to spectroscopy and calorimetry results, Biomaterial shows an amorphous structure with good miscibility and a high percentage of water in its structure. PVDF reduces mechanical properties by 7% while increases cell viability by 8.75%. Histological studies and MTT assay results showed a high improvement in the percentage of living cells at the first 4 days of cell cultivation. é 2018 Elsevier B.V.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/54977
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV