• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of vancomycin RS-100 nanoparticles in order to increase the intestinal permeability

Thumbnail
View/Open
apb-2-43.pdf (547.4Kb)
Date
2012
Author
Loveymi, BD
Jelvehgari, M
Zakeri-Milani, P
Valizadeh, H
Metadata
Show full item record
Abstract
Purpose:The purpose of this work was to preparation of vancomycin (VCM) biodegradable nanoparticles to improve the intestinal permeability, using water-in-oil-in-water (W/O/W) multiple emulsion method. Methods:The vancomycin-loaded nanoparticles were created using double-emulsion solvent evaporation method. Using Eudragit RS100 as a coating material. The prepared nanoparticles were identifyed for their micromeritic and crystallographic properties, drug loading, particle size, drug release, Zeta potential, effective permeability (Peff) and oral fractional absorption. Intestinal permeability of VCM nanoparticles was figured out, in different concentrations using SPIP technique in rats. Results:Particle sizes were between 362 and 499 nm for different compositions of VCM-RS-100 nanoparticles. Entrapment efficiency expansed between 63%-94.76%. The highest entrapment efficiency 94.76% was obtained when the ratio of drug to polymer was 1:3. The in vitro release studies were accomplished in pH 7.4. The results showed that physicochemical properties were impressed by drug to polymer ratio. The FT-IR, XRPD and DSC results ruled out any chemical interaction betweenthe drug and RS-100. Effective intestinal permeability values of VCM nanoparticles in concentrations of 200, 300 and 400 ?g/ml were higher than that of solutions at the same concentrations. Oral fractional absorption was achieved between 0.419-0.767. Conclusion:Our findings suggest that RS-100 nanoparticles could provide a delivery system for VCM, with enhanced intestinal permeability. é 2012 by Tabriz University of Medical Sciences.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/53405
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV