• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria

Thumbnail
View/Open
apb-2-17.pdf (482.8Kb)
Date
2012
Author
Azhdarzadeh, M
Lotfipour, F
Zakeri-Milani, P
Mohammadi, G
Valizadeh, H
Metadata
Show full item record
Abstract
Purpose: Azithromycin (AZI) is a new macrolide antibiotic with a better activity against intracellular gram negative bacteria in comparison with Erythromycin. The purpose of this research was to prepare AZI nanoparticles (NPs) using PLGA polymer and to compare the effectiveness of prepared nanoparticles with untreated AZI solution. Methods: AZI NPs were prepared by Modified Quasi-Emulsion Solvent Diffusion method. The antibacterial activities of prepared NPs in comparison with AZI solution were assayed against indicator bacteria of Escherichia coli (PTCC 1330), Haemophilus influenzae (PTCC 1623) and Streptococcus pneumoniae (PTCC 1240) using agar well diffusion. Inhibition zone diameters (IZD) of nano-formulation were compared to the corresponding untreated AZI. Mean Inhibitory Concentration (MIC) values of AZI were also determined using serial dilution method in nutrient broth medium. Results: Mean IZD of nano-formulations for all indicator bacteria were significantly higher than that of untreated AZI (P<0.01). The enhanced antibacterial efficacy was more dominant in the gram positive species. The MIC values of NPs against the tested bacteria were reduced 8 times in comparison to those of untreated AZI. Conclusion: These results indicated an improved potency of AZI NPs which could be attributed to the modified surface characteristics as well as increased drug adsorption and uptake. آ© 2012 by Tabriz University of Medical Sciences.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/52560
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV