• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel non-invasive strategy for low-level laser-induced cancer therapy by using new Ag/ZnO and Nd/ZnO functionalized reduced graphene oxide nanocomposites

Thumbnail
Date
2018
Author
Jafarirad, S
Hammami Torghabe, E
Rasta, SH
Salehi, R
Metadata
Show full item record
Abstract
In the present research, an effective drug-free approach was developed to kill MCF7 breast cancer cells using low-level laser therapy (LLLT) combined with reduced graphene oxide (rGO)-based hybrid nanocomposites (NCs). Here, fruit extract of Rosa canina was used for the first time to obtain the rGO/ZnO, Ag-ZnO/rGO and Nd-ZnO/rGO NCs by green synthesis. Physico/photochemical properties of these NCs were evaluated using FTIR, XRD, Raman, XPS, SEM/EDX, UV-Vis, DLS and AFM. The potential of the as-synthesized NCs on ROS generating and antioxidant activity were assessed by DPPH. After optimizing the proper concentration of the NCs their anti-tumoral efficacy were evaluated by DAPI staining and MTT assay tests for laser therapy on MCF7 breast cancer cells. Interestingly, cell death was increased dramatically by increasing irradiation dose from 8-32?J/cm2 and then decreased by enhancing laser dose. The maximum amount of cell death is 50% which was observed in the presence of ZnO/rGO 20% by irradiation dose of 32?J/cm2. Furthermore, in comparison with 810?nm, 630?nm lasers were more effective in LLLT of MCF7 cells. The results show the potential of using rGO-based NCs in LLLT, which may be combined with other therapeutic approaches to assist our fight against cancer. é 2018 Informa UK Limited, trading as Taylor & Francis Group
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/52311
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV