• English
    • Persian
  • Persian 
    • English
    • Persian
  • ورود
مشاهده آیتم 
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling the electrophoretic mobility of analytes in binary solvent electrolyte systems in capillary electrophoresis using an artificial neural network

Thumbnail
نمایش/بازکردن
s4.pdf (92.26Kb)
تاریخ
2005
نویسنده
Jouyban, A
Majidi, MR
Altria, KD
Clark, BJ
Asadpour-Zeynali, K
Metadata
نمایش پرونده کامل آیتم
چکیده
An artificial neural network (ANN) methodology was used to model the electrophoretic mobility of basic analytes in binary solvent electrolyte systems. The electrophoretic mobilities in pure solvent electrolytes, and the volume fractions of the solvents in mixtures were used as input. The electrophoretic mobilities in mixed solvent buffers were employed as the output of the network. The optimized topology of the network was 3-3-1. 32 experimental mobility data sets collected from the literature were employed to test the correlation ability and prediction capability of the proposed method. The mean percentage deviation (MPD) between the experimental and calculated values was used as an accuracy criterion. The MPDs obtained for different numerical analyses varied between 0.21% and 13.74%. The results were also compared with similar calculated mobilities which were derived from the best multiple linear model from the literature. From these results it was found that the ANN methodology is superior to the multiple linear model.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/51995
Collections
  • Published Articles

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV
 

 

مرور

همه مخزنجامعه ها و مجموعه هابراساس تاریخ انتشارنویسنده هاعنوانهاموضوعاین مجموعهبراساس تاریخ انتشارنویسنده هاعنوانهاموضوع

حساب من

ورودثبت نام

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV