• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and In Vitro Studies of Cross-Linked Hydrogel Nanoparticles Containing Amoxicillin

Thumbnail
Date
2011
Author
Moogooee, M
Ramezanzadeh, H
Jasoori, S
Omidi, Y
Davaran, S
Metadata
Show full item record
Abstract
In this paper, we report the synthesis and characterizatipn of a novel cross-linked N-isopropylacrylamide-acrylic acid-hydroxyethyl methacrylate [P (NIPASM-AA-HEM)] hydrogel nanoparticles (NPs) containing amoxicillin. The aim of present study was to investigate whether these hydrogel NPs have the potential to be used in antibiotic delivery to stomach for treatment of Helicobacter pylori. Amoxicillin-loaded hydrogel NPs were prepared using crosslinked P (NIPASM-AA-HEM) as mucoadhesive polymer for the potential use of treating gastric and duodenal ulcers. Aiming at predicting the in vivo behavior of the amoxicillin-loaded NPs, the physicochemical properties in terms of entrapment efficiency (EE%), mean diameter, and morphology of NPs was evaluated. The dependence of the EE% of the drug on the organic to aqueous phase ratio was also studied. The profile of amoxicillin release from P (NIPASM-AA-HEM) NPs system was studied under various conditions. In all these experiments, amoxicillin release in the free form was studied by ultraviolet (UV) spectrophotometric analysis. Experimental results showed that at pH 7.4, drug release rises when polymer concentration in the formulation increases; in human plasma on the contrary, drug release is reduced as concentration of the polymer in the formulation rises. In vitro amoxicillin release rate was also higher in pH 1 than that in pH 7.4. About 88.5% of amoxicillin entrapped in the NPs was released in 4 h in the pH 1.0 medium, whereas in phosphate buffer at pH 7.4 no more than 45% was released after 4 h incubation at 37 degrees C. Amoxicillin concentration in rat's gastric tissue was determined. The results of in vivo studies showed that the hydrogel NPs enhance drug concentration at topical site than powder amoxicillin. Thus, amoxicillin-loaded hydrogel NPs may provide therapeutic concentration at a much lower dose that may reduce the adverse effects of amoxicillin in high doses. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:1057-1066, 2011
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/50369
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV