• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A principal component analysis approach for developing retention models in liquid chromatography

Thumbnail
Date
2012
Author
Nikitas, P
Pappa-Louisi, A
Tsoumachides, S
Jouyban, A
Metadata
Show full item record
Abstract
Three retention models for liquid chromatography are developed using principal component analysis (PCA). It is shown that they exhibit features similar to that of the model based on linear solvation energy relationship (LSER). However, the fitting performance of the PCA models is better than that of the LSER model, the performance of which can be considerably improved by the use of artificial neural networks. In addition, the possibility of using the proposed models as well as the LSER model to predict the retention times of solutes under chromatographic conditions at which these solutes have never been studied is also examined by means of three data sets of analytes consisting of non-polar compounds to polar compounds with a variety of functional groups. (c) 2012 Elsevier B.V. All rights reserved.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/49654
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV