• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of dual responsive nanocomposite for simultaneous delivery of anticancer drugs

Thumbnail
Date
2014
Author
Salehi, R
Hamishehkar, H
Eskandani, M
Mahkam, M
Davaran, S
Metadata
Show full item record
Abstract
In this paper novel stimuli-responsive cationic mesoporous silica nanoparticles (MSNs) were fabricated through the facile polymerization method. The synthesis process was characterized and validated by Fourier transform infrared spectroscopy and hydrogen nuclear magnetic resonance spectroscopy. The prepared nanoparticles were characterized using scanning electron microscopy (SEM), Zeta potential and thermogravimetric analysis methods. SEM results revealed the uniformity in size and shape of nanoparticles with a mean diameter of approximately 60 nm. Two model anticancer drugs, Doxorubicin (DOX) and Methotroxate (MTX) were loaded effectively to functionalized MSNs through electrostatic interactions. Our developed HPLC-UV method was applied for simultaneous determination of DOX and MTX. Modified MSNs yielded a pH and temperature-triggered release of entrapped drugs at tumor tissue environment (lower pH and higher temperature than physiological condition). In-vitro cytotoxicity assay showed that the blank carrier showed no cytotoxicity on both A549 and MCF7 cells at different amounts after incubation for 72 h confirming its suitability as a drug carrier. Multi anticancer drug-loaded MSNs, in the other hand, caused an efficient anticancer performance verified by DAPI staining and MTT assay tests. It was concluded that our findings may open the possibilities for cooperative thermo and pH-responsive targeted delivery of DOX and MTX to the cancerous tissues.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/48716
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV