• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dominant and Protective Role of the CYTH4 Primate-Specific GTTT-Repeat Longer Alleles Against Neurodegeneration

Thumbnail
Date
2015
Author
Rezazadeh, M
Gharesouran, J
Movafagh, A
Taheri, M
Darvish, H
Emamalizadeh, B
Shahmohammadibeni, N
Khorshid, HRK
Behmanesh, M
Sahraian, MA
Ohadi, M
Metadata
Show full item record
Abstract
Primate-specific genes and regulatory mechanisms could provide insight into human brain functioning and disease. In a genome-scale analysis of the entire protein-coding genes listed in the GeneCards database, we have recently reported human genes that contain "exceptionally long" short tandem repeats (STRs) in their core promoter, which may be of adaptive/selective evolutionary advantage in this species. The longest tetra-nucleotide repeat identified in a human gene core promoter belongs to the CYTH4 gene. This GTTT-repeat is specific to Hominidae and Old World monkeys, and the shortest allele of this repeat, (GTTT)(6), is linked with neural dysfunction and type I bipolar disorder in human. In the present study, we sought a possibly broader role for the CYTH4 gene core promoter GTTT-repeat in neural functioning and investigated its allelic distribution in a total of 949 human subjects, consisting of two neurodegenerative disorders, multiple sclerosis (MS) (n = 272) and Alzheimer's disease (AD) (n = 257), and controls (n = 420). The range of the alleles of this GTTT-repeat in the human sample studied was between 6- and 9-repeats. The shortest allele, (GTTT)(6), was significantly in excess in the MS and AD patients in comparison with the controls (p < 0.004). The 6/6, 6/7, and 7/7 genotypes were in excess in the MS and AD patients, whereas the overall frequency of all other genotypes (consisting of at least one longer allele, i.e., 8- or 9-repeat) was higher in the controls (p < 0.005), indicating a dominant and protective effect for the longer alleles against neurodegeneration. This is the first indication of the involvement of a primate-specific STR in neurodegeneration in humans. We propose an adaptive evolutionary role for the expansion of the CYTH4 gene core promoter GTTT-repeat in the human brain, which is supported by a link between the shortest allele of this repeat with neuropsychiatric disorders.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/47876
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV