Nonionic surfactant-based vesicular system for transdermal drug delivery
Abstract
Objective: The objective of this study was to formulate and evaluate the Ibuprofen niosomal formulation as a transdermal drug delivery system.Materials and methods: Niosomes were prepared by a modified ethanol injection method, using Span 60, Tween 60 and Tween 65 as well as cholesterol with various cholesterol:surfactant molar ratios. The prepared vesicles were characterized for entrapment efficiency (EE), particle size, zeta potential and in vitro release study. Skin permeation studies were conducted using modified Franz diffusion cell, and excised rat skin was treated with niosomal, liposomal and conventional Carbopol 914 gel of Ibuprofen.Results and discussion: The results showed that the type of surfactant and molar ratio of cholesterol:surfactant altered the EE, size and in vitro drug release of niosomes. Higher EE was obtained with the niosomes prepared with cholesterol and Span 60 at molar ratio of 0.5:1. It has been observed that both niosomal and liposomal formulations enhanced the drug permeation and the percentage of accumulated dose in the skin compared to control conventional gel formulation. However, niosomes prepared by Span 60 and Tween 65 exhibited higher permeation and retention of Ibuprofen, respectively.Conclusion: Our results suggested that niosomal formulations could be used as a promising carrier for the Ibuprofen transdermal delivery system.