• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dramatic improvement in dissolution rate of albendazole by a simple, one-step, industrially scalable technique

Thumbnail
Date
2016
Author
Ghanbarzadeh, S
Khalili, A
Jouyban, A
Emami, S
Javadzadeh, Y
Solhi, M
Hamishehkar, H
Metadata
Show full item record
Abstract
Low solubility and dissolution rate are the primary challenges in the drug development which substantially impact the oral absorption and bioavailability of drugs. Due to the poor water solubility, Albendazole (ABZ) is poorly absorbed from the gastrointestinal tract and shows low oral bioavailability (5%) which is a major disadvantage for the systemic use of ABZ. To improve the solubility and dissolution rate of ABZ, different classes of hydrophilic excipients such as sugars (lactose, sucrose, and glucose), polyols (mannitol and sorbitol), ionic surfactant (sodium lauryl sulfate) and non-ionic surfactant (Cremophor A25) were co-spray dried with ABZ. The crystallinity changes in the processed drug were characterized by differential scanning calorimetry and X-Ray diffraction methods were used to interpret the enhanced solubility and dissolution rate of the drug. Results showed that the solubility and dissolution rate of ABZ were increased 1.8-2.6 folds and 3-25 folds, respectively. Unexpectedly, SLS decreased the solubility index of drug powder even lower than the unprocessed drug which was attributed to drug-SLS ionic interaction as depicted from Fourier transform infrared spectroscopy. It was concluded that by applying the facile, one-step, industrially scalable technique and the use of small amounts of excipient (only 4% of the formulation), a great improvement (21 folds) in dissolution rate of ABZ was achieved. This finding may be used in the pharmaceutical industries for the formulation of therapeutically efficient dosage forms of class II and IV drugs classified in biopharmaceutical classification system.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/47313
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV