Electrochemical and photoelectrochemical nano-immunesensing using origami paper based method
Abstract
Patterned paper has characteristics that lead to miniaturized assays that run by capillary action with small volumes of fluids. These methods suggest a path for the development of simple, inexpensive, and portable diagnostic assays that can be useful in remote settings, where simple immunoassays are becoming increasingly important for detecting disease and monitoring health. Incorporation of nanomaterials plays a major role in sensing probe immobilization and detection sensitivity of paper-based devices. Nanomaterial properties, such as increased surface area, have aided with signal amplification and lower detection limits. This review focuses on application of nanomaterials as signal amplification elements on origami paper-based electro-analytical devices for immune biomarkers detection with a brief introduction about various fabrication techniques and designs, biological and detection methods. In this review, we comprehensively summarize the selected latest research articles from 2013 to May 2015 on application of nanomaterials in various types of origami paper based electrochemical and photoelectrochemical immunosensors. The review breaks into two parts. The first part devotes to the development and applications of nanomaterials in electrochemical immunesensing. The second part provides an overview of recent origami paper based photoelectrochemical immunosensors. (C) 2015 Elsevier B.V. All rights reserved.