• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Drug release from E chemistry hypromellose tablets using the Bio-Dis USP type III apparatus: An evaluation of the effect of systematic agitation and ionic strength

Thumbnail
Date
2016
Author
Asare-Addo, K
Supuk, E
Mandi, MH
Adebisi, AO
Nep, E
Conway, BR
Kaialy, W
Al-Hamidi, H
Nokhodchi, A
Metadata
Show full item record
Abstract
The aim of the study was to evaluate the effect of systematic agitation, increasing ionic strength and gel strength on drug release from a gel-forming matrix (HPMC E10M, E4M and E50LV) using USP type III Bio-Dis apparatus with theophylline as a model drug. The triboelectric charging; particle sizing, water content, true density and SEM of all the hypromellose grades, theophylline and formulated blends were characterised. The results showed that balanced inter-particulate forces exist between drug particles and the excipient surface and this enabled optimum charge to mass ratio to be measured. Agitation and ionic strength affected drug release from E50LV and E4M tablet matrices in comparison to the E10M tablet matrices. Drug release increased substantially when water was used as the dissolution media relative to media at pH 1.2 (containing 0.4M NaCl). The results showed all f(2) values for the E10M tablet matrices were above 50 suggesting the drug release from these tablet matrices to be similar. Rheological data also explained the different drug release behaviour with the stress required to yield/erode being 1 Pa, 150 Pa, and 320 Pa, for the E50LV, E4M and E10M respectively. The stiffness of the gel was also found to be varied from 2.5 Pa, 176.2 Pa and 408.3 Pa for the E50LV, E4M and E10M respectively. The lower G' value can be explained by a softer gel being formed after tablet introduction into the dissolution media thereby indicating faster drug release. (C) 2016 Elsevier B.V. All rights reserved.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/46866
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV