Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits
Date
2017Author
Eftekhari, H
Jahandideh, A
Asghari, A
Akbarzadeh, A
Hesaraki, S
Metadata
Show full item recordAbstract
Segmental bone loss due to trauma, infection, and tumor resection and even non-union results in the vast demand for replacement and restoration of the function of the lost bone. The objective of this study is to utilize novel inorganic-organic nanocomposites for biomedical applications. Biodegradable implants have shown great promise for the repair of bone defects and have been commonly used as bone substitutes, which traditionally would be treated using metallic implants. In this study, 45 mature male New Zealand white rabbits 6-8 months and weighting 3-3.5 kg were examined. Rabbits were divided into three groups. Surgical procedures were done after an intramuscular injection of Ketamine 10% (ketamine hydrochloride, 50 mg/kg), Rompun 5% (xylazine, 5 mg/kg). Then an approximately 6 mm diameter - 5 mm cylinder bone defect was created in the femur of one of the hind limbs. After inducing the surgical wound, all rabbits were colored and randomly divided into three experimental groups of nine animals each: Group 1 received medical pure nanocomposite polycaprolactone (PCL) granules, Group 2 received hydroxyapatite and Group 3 was a control group with no treatment. Histopathological evaluation was performed on days 15, 30 and 45 after surgery. On day 45 after surgery, the quantity of newly formed lamellar bone in the healing site in PCL group was better than onward compared with HA and control groups. Finally, nanocomposite PCL granules exhibited a reproducible bone-healing potential.