• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A quantitative structure-mobility relationship of organic acids using solvation parameters

Thumbnail
Date
2017
Author
Hamidi, H
Hamidi, S
Vaez, H
Metadata
Show full item record
Abstract
A quantitative structure-mobility relationship (QSMR) is proposed to estimate the electrophoretic mobility of diverse sets of analyses in capillary zone electrophoresis using Abraham solvation parameters of analyses, such as the excess molar refraction, polarizability, hydrogen bond acidity, basicity, and molar volume. QSMR was developed for prediction the electrophoretic mobility of 231 organic acids using the solvation parameters calculated by Abraham. Multiple linear regression (MLR) as a linear model and artificial neural network (ANN) methods were used to evaluate the nonlinear behavior of the involved parameters. The prediction results are obtained by nonlinear model, ANN, seem to be superior over MLR and were in good agreement with experimental data. In the proposed ANN-QSMR model, the overall mean percentage deviation values were 5.6, 5.4, and 5.3% and the coefficients of determinations (R-2) were 0.84, 0.84, and 0.84 for training, test, and verification set, respectively. To investigate the robustness of the model, cross-validation methods have been established, i.e., leave-one-out and leave-N-out (N=5 and 10) and model is showed good predictive ability against data variation in cross-validation process. This model is not only able to accurately predict the migration order of a diverse set of organic acids but also model finds that solvation parameters are responsible in separation mechanism. [GRAPHICS]
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/46069
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV