• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Medical diagnosis of Rheumatoid Arthritis using data driven PSO-FCM with scarce datasets

Thumbnail
Date
2017
Author
Salmeron, JL
Rahimi, SA
Navali, AM
Sadeghpour, A
Metadata
Show full item record
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmurie disease that affect joints and muscles, and can result in noticeable disruption of joint structure and function. Early diagnosis of RA is very crucial in preventing disease's progression. However, it is a complicated task for General Practitioners (GPs) due to the wide spectrum of symptoms, and progressive changes in disease's direction over time. In order to assist physicians, and to minimize possible errors due to fatigued or less-experienced physicians, this study proposes an advanced decision support tool based on consultations with a group of experienced medical professionals (i.e. orthopedic surgeons and rheumatologists), and using a well-known soft computing method called Fuzzy Cognitive Maps (FCMs). First, a set of criteria for diagnosis of RA, based on previous studies and consultation with medical professionals have been selected. Then, Particle Swarm Optimization (PSO) and FCMs along with medical experts' knowledge were used to model this problem and calculate the severity of the RA disease. Finally, a small-scale test has been conducted at Shohada University Hospital, Iran, for evaluating the accuracy of the proposed tool. Accuracy level of the tool reached to 90% and the results closely matched the medical professionals' opinions. Considering obtained results in real practice, we believe that the proposed decision support tool can assist GPs in an accurate and timely diagnosis of patients with RA. Ultimately, the risk of wrong or late diagnosis will be diminished, and patients' disease may be prevented from moving through the advanced stages.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/45727
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV