• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models

Thumbnail
Date
2017
Author
Mahmoudi, N
Eslahi, N
Mehdipour, A
Mohammadi, M
Akbari, M
Samadikuchaksaraei, A
Simchi, A
Metadata
Show full item record
Abstract
In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were prepared by electrospinning of highly concentrated chitosanpolyvinylpyrrolidone solutions containing graphene oxide (GO) nanosheets. No surfactants and organic solvents were utilized to ensure high biocompatibility of the fibrous structure. In vitro evaluations by human skin fibroblast cells including live and dead assay and MTT results show that GO promote cell viability of porous nanofibrous membrane while providing enhanced bactericidal capacity. In vivo studies on rat's skin determine accelerated healing effect, i.e. a large open wound (1.5 x 1.5 cm(2)) is fully regenerated after 14-day of post operation while healing is observed for sterile gauze sponge (as the control). Pathological studies support thick dermis formation and complete epithelialization in the presence of 1.5 wt% GO nanosheets. Over 99% wound healing occurs after 21 days for the injury covered with TSG containing 1.5 wt% GO while this would takes weeks for the control. Therefore, the developed materials have a high potential to be used as TSG as pre-clinical testing has shown. [GRAPHICS]
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/45697
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV