• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing cisplatin delivery to hepatocellular carcinoma HepG2 cells using dual sensitive smart nanocomposite

Thumbnail
Date
2018
Author
Salimi, F
Dilmaghani, KA
Alizadeh, E
Akbarzadeh, A
Davaran, S
Metadata
Show full item record
Abstract
Targeted entrance and accumulation of higher doses of drugs into malignant cells could help in intensification of tumor specific cytotoxicity. A dual-responsive nanogel, poly(N-isopropylacrylamide)-co-poly(N,N-(dimethylamino)ethyl methacrylate) [P(NIPAM-co-DMA)] containing N-isopropylacrylamide (NIPAM) as thermoresponsive monomer and N,N-(dimethylamino)ethyl methacrylate (DMA) as pH-responsive monomer and methylene-bis-acrylamide (MBA) as cross-linking agent, was synthesized by free radical emulsion polymerization. Cisplatin along with magnetic Fe3O4 nanoparticles (MNPs) was loaded into the nanogel by physically embedding the magnetic nanoparticles into hydrogel matrix after gelation to obtain drug-loaded magnetic nanocomposite [P(NIPAM-co-DMA)/Fe3O4]. Drug loading efficiencies and drug release profiles of cisplatin-loaded P(NIPAM-co-DMA) nanogel and P(NIPAM-co-DMA)/Fe3O4 nanocomposite were evaluated in vitro for controlled drug delivery in different temperature and pH conditions. Finally, the anticancer activity of P(NIPAM-co-DMA)/Fe3O4 nanocomposite on human liver HepG2 cells was evaluated. Nanogel and nanocomposite showed significantly higher (p<.05) cisplatin release at 40 degrees C compared to 37 degrees C and at pH 5.7 compared to pH 7.4, demonstrating their temperature and pH sensitivity, respectively. The cytotoxicity assay of drug free nanogel on HepG2 cell line indicated that the nanogel is biocompatible and suitable as drug carrier. Moreover, MTT assay revealed that the cisplatin-loaded nanocomposite represented significant superior cytotoxicity (p<.05) to HepG2 cells as compared with free cisplatin.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/44776
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV