• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comparative study on the potentials of nanoliposomes and nanoethosomes for Fluconazole delivery

Thumbnail
Date
2018
Author
Zandi, G
Lotfipour, F
Ghanbarzadeh, S
Medghalchi, M
Hamishehkar, H
Metadata
Show full item record
Abstract
The incidence of fungal has been increased worldwide. Biofilms are common assemblies of microorganisms enclosed in an exopolymeric coat that form on the biotic and abiotic surfaces which related to a variety of persistent infections that poorly respond to conventional antibiotic therapy. Fluconazole is a proved imidazole derivative which has a broad range of activity and is effective against most pathogenic fungi. In the present work we encapsulated Fluconazole by using nanoliposomal (by thin film hydration method) and nanoethosomal (by ethanol injection method) formulations and made a comparative evaluation of their morphology, particle size, zeta potential, and encapsulation efficiency. Antifungal analysis against Candida albicans (C. albicans) indicated that only in vitro experiments cannot indicate the merits of nanovesicular systems and even may show the vice versa results. Vesicle size, zeta potential, encapsulation efficiency and loading capacity of the optimized nanoliposomes and nanoethosomes were found to be 99.79 +/- 11.1 nm, -7.25 +/- 4.88, mV 98.32 +/- 3.93%, and 8.93 +/- 0.36%, as well as 114.37 +/- 12.76 nm, 3.04 +/- 5.47 mV, 67.22 +/- 3.68% and 9.58 +/- 2.35%, respectively. In vitro drug release study demonstrated that nanoliposomal and nanoethosomal formulations could release 40% and 80% of loaded drug after 48 h. Although, nanoliposomal and nanoethosomal formulations showed suitable size, morphology, encapsulation efficiency, and drug release, nanoliposomes seem to be more appropriate than nanoethosomes for prevention of fungal biofilm formation due to higher drug entrapment and sustained drug release.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/44487
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV