• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probing the specific binding of folic acid to folate receptor using amino-functionalized mesoporous silica nanoparticles for differentiation of MCF 7 tumoral cells from MCF 10A

Thumbnail
Date
2018
Author
Soleymani, J
Hasanzadeh, M
Somi, MH
Shadjou, N
Jouyban, A
Metadata
Show full item record
Abstract
Folate receptor (FR) is overexpressed in various cancer cells while its expression in normal cells is restricted. The present study provides a new folic acid/folate (FA) functionalized nanomaterials to sense and the differentiation of the cancer cells from normal ones. The reported nanoprobe is based on the mesoporous materials that are functionalized with FA to specify the FR overexpressed cancerous cells. MCF 7 cell lines were used as a model to show the ability of the developed probe for cancer cell detection. The selective binding of FA to FR-positive cells causes the endocytosis of the mesoporous materials into the cells where it can be observed by fluorescence microscopy images. The specific nature of the binding of the FA functionalized mesoporous silica prevents the false detection of normal cells from cancerous cells even in the presence of each other. The cytotoxicity of the n-Pr-NH2-MCM 41-FA on the MCF 7 cells was investigated using MIT assay. The reported method can detect the MCF 7 cells from 100 to 1000 cells/mL. This method provides a selective and nontoxic approach towards detection of breast cancer cell lines while it can be developed as a point of care (POC) device for early detection of cancer. Finally, the MCF 7 cancer cells were treated with doxorubicin anti-cancer drug and our device detect the trace amount of MCF 7 based on their electrochemical activity.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/44065
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV