• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fibrin/platelet plug counteracts cutaneous wound contraction: the hypothesis of "skipping stone".

Thumbnail
Date
2007
Author
Farahani, RM
Metadata
Show full item record
Abstract
Cutaneous wound contraction and epithelialization act collaboratively to minimize the exposed wound surface. However excessive wound contraction is undesirable due to the resultant disfigurement and scarring. Fibrin clot has greater stiffness than surrounding tissue and mechanical strain further enhances its stiffness. On the contrary, skin exhibits diminished stiffness when affected by high strain rates. Therefore during early stages of wound healing, the contractile wound border is confronted by fibrin clot forming a high strain region in the interface of contractile tissue and fibrin clot--which is evidenced by computer simulation. Due to the stress relaxation property of skin, the contractile strain is partly neutralized. Meanwhile, gradually the stiffness of fibrin clot decreases which is followed by another cycle of wound contraction. This cyclic pattern of contraction resembles the movement of a stone over water or "skipping stone". The stone bounces repeatedly when thrown across the surface of water with reduction of jumping altitude with each bounce till the stone stops completely. This hypothesis is further supported by the observed initial delay in wound contraction and the chronological correlation of enhanced wound contraction with loss of superficial eschar and substitution of fibrin clot with granulation tissue. Also there is evidence that fibrin inhibits fibroblast-mediated contraction of collagen. Furthermore, modest increase in wound contraction rate in fibrinogen deficient mice and fibrin-mediated diminished wound contraction are agreement with the proposed hypothesis.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/43853
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV