• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Formulation, characterization, and geno/cytotoxicity studies of galbanic acid-loaded solid lipid nanoparticles.

Thumbnail
Date
2015
Author
Eskandani, M
Barar, J
Dolatabadi, JE
Hamishehkar, H
Nazemiyeh, H
Metadata
Show full item record
Abstract
Galbanic acid (GBA) is a sesquiterpene coumarin with different medicinal properties and anticancer effects.To improve the anticancer activities of GBA, in the current study, we aimed to fabricate GBA-loaded solid lipid nanoparticles (GBA-SLNs) and study their biological activities in vitro.Hot homogenization was used for preparation of GBA-SLNs. The encapsulation efficiency (EE) and drug loading (DL) and in vitro release were determined. MTT, DAPI, DNA fragmentation, comet, and Anexin V apoptosis assays were used to compare the anti-cell proliferation and genotoxicity properties of GBA and GBA-SLNs against A549 cells and HUVEC to detect apoptosis and DNA damage in the final concentration of 100 µM after 48 h treatment.Scanning electron microscopy (SEM) and particle size analysis showed spherical SLNs (92 nm), monodispersed distribution, and zeta potential of -23.39 mV. High EE (>98%) and long-term in vitro release were achieved. The stability of GBA-SLNs in aqueous medium was approved after 3 months in terms of size and polydispersity index. GBA was able to inhibit A549 growth with an IC50 value of 62 µM at 48 h. Although GBA-SLNs could also inhibit the growth rate of A549 cells, the effect is perceived after 48 h, as approved by the quantitative expression of Bcl-xL and Casp 9 genes, and also genotoxicity assays.Long-term apoptotic effect of GBA-SLNs compared with GBA may be due to the accumulation of GBA-SLNs in the tumor site because of deviant tumor pathology. Our data confirmed that SLNs could be exploited for sustained lipophilic GBA delivery.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/40941
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV