• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applying random forest and subtractive fuzzy c-means clustering techniques for the development of a novel G protein-coupled receptor discrimination method using pseudo amino acid compositions.

Thumbnail
Date
2015
Author
Sokouti, B
Rezvan, F
Dastmalchi, S
Metadata
Show full item record
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of integral membrane proteins (IMPs) and they tremendously contribute in the flow of information into cells. In this study, the random forest (RF) and the subtractive fuzzy c-means clustering (SBC) methods have been used to determine the importance of input variables and discriminate GPCRs from non-GPCRs using twenty amino acid and fifty pseudo amino acid compositions derived from GPCR sequences. The studied dataset was retrieved from the UniProt/SWISSPROT database and consists of 1000 GPCR and 1000 non-GPCR reviewed sequences. The top ranked RF-SBC-based model discriminates GPCRs and non-GPCRs successfully with the accuracy, sensitivity, specificity and Matthew's coefficient correlation (MCC) rates of 99.15%, 99.60%, 98.70% and 0.983%, respectively. These rates were obtained from averaged values of 5-fold cross validation using only twenty four out of fifty pseudo amino acid composition features. The results show that the proposed RF-SBC-based model outperforms other existing algorithms in terms of the evaluated performance criteria. The webserver for the proposed algorithm is available at http://brcinfo.shinyapps.io/GPCRIden.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/40768
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV