Towards optimization of odonto/osteogenic bioengineering: in vitro comparison of simvastatin, sodium fluoride, melanocyte-stimulating hormone.
Date
2017Author
Zijah, V
Salehi, R
Aghazadeh, M
Samiei, M
Alizadeh, E
Davaran, S
Metadata
Show full item recordAbstract
Tissue engineering has emerged as a potential therapeutic option for dental problems in recent years. One of the policies in tissue engineering is to use both scaffolds and additive factors for enhancing cell responses. This study aims to evaluate and compare the effect of three types of biofactors on poly-caprolactone-poly-ethylene glycol-poly caprolactone (PCL-PEG-PCL) nanofibrous scaffold on human dental pulp stem cell (hDPSCs) engineering. The PCL-PEG-PCL copolymer was synthesized with ring opening polymerization method, and its nanofiber scaffold was prepared by electrospinning method. Nanofibrous scaffold-seeded hDPSCs were treated with sodium fluoride (NaF), melanocyte-stimulating hormone (MSH), or simvastatin (SIM). Non-treated nanofiber seeded cells were utilized as control. The viability, biocompatibility, adhesion, proliferation rate, morphology, osteo/odontogenic potential, and the expression of tissue-specific genes were studied. The results showed that significant higher results demonstrated significant higher adhesive behavior, viability, alizarin red activity, and dentin specific gene expression in MSH- and SIM-treated cells (p < 0.05). This study is unique; in that, it compares the effects of different treatments for optimization of dental tissue engineering.