• English
    • Persian
  • Persian 
    • English
    • Persian
  • ورود
مشاهده آیتم 
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
  •   صفحه اصلی مخزن دانش
  • TBZMED Published Academics Works
  • Published Articles
  • مشاهده آیتم
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational prediction of drug-drug interactions based on drugs functional similarities.

Thumbnail
تاریخ
2017
نویسنده
Ferdousi, R
Safdari, R
Omidi, Y
Metadata
نمایش پرونده کامل آیتم
چکیده
Therapeutic activities of drugs are often influenced by co-administration of drugs that may cause inevitable drug-drug interactions (DDIs) and inadvertent side effects. Prediction and identification of DDIs are extremely vital for the patient safety and success of treatment modalities. A number of computational methods have been employed for the prediction of DDIs based on drugs structures and/or functions. Here, we report on a computational method for DDIs prediction based on functional similarity of drugs. The model was set based on key biological elements including carriers, transporters, enzymes and targets (CTET). The model was applied for 2189 approved drugs. For each drug, all the associated CTETs were collected, and the corresponding binary vectors were constructed to determine the DDIs. Various similarity measures were conducted to detect DDIs. Of the examined similarity methods, the inner product-based similarity measures (IPSMs) were found to provide improved prediction values. Altogether, 2,394,766 potential drug pairs interactions were studied. The model was able to predict over 250,000 unknown potential DDIs. Upon our findings, we propose the current method as a robust, yet simple and fast, universal in silico approach for identification of DDIs. We envision that this proposed method can be used as a practical technique for the detection of possible DDIs based on the functional similarities of drugs.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/38943
Collections
  • Published Articles

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV
 

 

مرور

همه مخزنجامعه ها و مجموعه هابراساس تاریخ انتشارنویسنده هاعنوانهاموضوعاین مجموعهبراساس تاریخ انتشارنویسنده هاعنوانهاموضوع

حساب من

ورودثبت نام

مخزن دانش دانشگاه علوم پزشکی تبریز در نرم افزار دی اسپیس، کپی رایت 2018 ©  
تماس با ما | Send Feedback
Theme by 
Atmire NV