• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting the capability of carboxymethyl cellulose-stabilized iron nanoparticles for the remediation of arsenite from water using the response surface methodology (RSM) model: Modeling and optimization.

Thumbnail
Date
2017
Author
Mohammadi, A
Nemati, S
Mosaferi, M
Abdollahnejhad, A
Almasian, M
Sheikhmohammadi, A
Metadata
Show full item record
Abstract
This study aimed to investigate the feasibility of carboxymethyl cellulose-stabilized iron nanoparticles (C-nZVI) for the removal of arsenite ions from aqueous solutions. Iron nanoparticles and carboxymethyl cellulose-stabilized iron nanoparticles were freshly synthesized. The synthesized nanomaterials had a size of 10nm approximately. The transmission electron microscope (TEM) images depicted bulkier dendrite flocs of non-stabilized iron nanoparticles. It described nanoscale particles as not discrete resulting from the aggregation of particles. The scanning electron microscopy (SEM) image showed that C-nZVI is approximately discrete, well-dispersed and an almost spherical shape. The energy dispersive x-ray spectroscopy (EDAX) and X-ray diffraction (XRD) spectrum confirmed the presence of Fe0 in the C-nZVI composite. The central composite design under the Response Surface Methodology (RSM) was employed in order to investigate the effect of independent variables on arsenite removal and to determine the optimum condition. The reduced full second-order model indicated a well-fitted model since the experimental values were in good agreement with it. Therefore, this model is used for the prediction and optimization of arsenite removal from water. The maximum removal efficiency was estimated to be 100% when all parameters are considered simultaneously. The predicted optimal conditions for the maximum removal efficiency were achieved with initial arsenite concentration, 0.68mgL-1; C-nZVI, 0.3 (gL-1); time, 31.25 (min) and pH, 5.2.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/38730
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV