• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Haloacetic acids degradation by an efficient Ferrate/UV process: Byproduct analysis, kinetic study, and application of response surface methodology for modeling and optimization.

Thumbnail
Date
2017
Author
Aslani, H
Nasseri, S
Nabizadeh, R
Mesdaghinia, A
Alimohammadi, M
Nazmara, S
Metadata
Show full item record
Abstract
Haloacetic acids (HAAs) after trihalomethanes are the second main group of chlorination byproducts. In this study, decomposition of the two most common HAAs in drinking water was studied by an advanced oxidation process using a combination of Ferrate [Fe(VI)] and UV irradiation. The decomposition rate was measured, and the byproducts formed during the process and the mass balances were also analyzed. HAAs were quantified by GC-ECD, and the final products including acetate and chloride ions were measured by ion chromatography (IC). A central composite design was used for the experimental design, and the effect of four variables including the initial HAA concentration, pH, Fe(VI) dosage, and contact time were investigated by response surface methodology (RSM). Dichloroacetic acid decomposed more easily than TCAA. Results show that when TCAA and DCAA were studied individually, the degradation rates were 0.0179 and 0.0632آ min-1, respectively. When the HAAs were simultaneously placed in the reactor, the decomposition rates of both TCAA and DCAA decreased dramatically. In this case their decomposition rate constants decreased by 67% and 49%, respectively. In the mixture, the decomposition rate of DCAA was 2.5 times higher than that of TCAA. In summary, Fe(VI)/UV process can be used as a promising treatment option for the decomposition of recalcitrant organic pollutants such as HAAs, and RSM can be used for modeling and optimizing the process.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/38643
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV