• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial.

Thumbnail
Date
2018
Author
Dolati, S
Aghebati-Maleki, L
Ahmadi, M
Marofi, F
Babaloo, Z
Ayramloo, H
Jafarisavari, Z
Oskouei, H
Afkham, A
Younesi, V
Nouri, M
Yousefi, M
Metadata
Show full item record
Abstract
In the current study, we aimed to identify nanocurcumin effects on microRNAs (miRNAs) in the peripheral blood of patients with relapsing-remitting multiple sclerosis (RRMS). We intended to investigate the expression pattern of these miRNAs in experimental settings in vivo. The expression levels of the selected 27 miRNAs known to be involved in the regulation of immune responses were analyzed in 50 RRMS patients and 35 healthy controls. The miRNA expression profiles were investigated by quantitative PCR (qPCR) at baseline and after 6 months of nanocurcumin therapy. Our data revealed that the expression of a number of microRNAs including miR-16, miR-17-92, miR-27, miR-29b, miR-126, miR-128, miR-132, miR-155, miR-326, miR-550, miR-15a, miR-19b, miR-106b, miR-320a, miR-363, miR-31, miR-150, and miR-340 is regulated by nanocurcumin. The results of the current work indicate that nanocurcumin is able to restore the expression pattern of dysregulated miRNAs in MS patients. We discovered that some miRNAs are deregulated in untreated patients compared with healthy controls and nanocurcumin-treated patients. This is a new finding that might represent the potential contribution of these miRNAs to MS pathogenesis. Taken together, these data provide novel insights into miRNA-dependent regulation of the function of B and T cells in MS disease and enrich our understanding of the effects mediated by a therapeutic approach that targets B and T cells.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/38305
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV