• English
    • Persian
  • English 
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sensitive monitoring of taurine biomarker in unprocessed human plasma samples using a novel nanocomposite based on poly(aspartic acid) functionalized by graphene quantum dots.

Thumbnail
Date
2018
Author
Shadjou, N
Alizadeh, S
Hasanzadeh, M
Metadata
Show full item record
Abstract
The rapid and accurate determination of the level of taurine biomarker in various tissues and body fluids can be of great interest in the early diagnosis of several important pathologies and diseases. For the first time, this study reports on the electropolymerization of a low toxic and biocompatible nanocomposite "poly(aspartic acid)-graphene quantum dots (GQDs)" as a novel strategy for surface modification of glassy carbon electrode and preparation a new interface for measurement of taurine. Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of GQDs nanostructures on poly(aspartic acid) using cyclic voltammetry techniques in the regime of -1.5 to 2آ V. The field emission scanning electron microscopy indicated immobilization of uniformly GQDs onto poly(aspartic acid) film. The modified electrode appeared as an effective electroactivity for detection of taurine biomarker using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of poly(aspartic acid) as semiconducting polymer, GQDs as high density of edge plane sites, and subtle electronic characteristics to chemical modification. Under the optimized analysis conditions, the prepared sensor for detection of taurine showed a low limit of quantification 0.001mM. Finally, the resulting prepared sensor allow the quantification of these biomarkers directly in biological samples without need of derivatization schemes or sample pretreatment.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/37683
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV