نمایش پرونده ساده آیتم

dc.contributor.advisorEsmaeili, Farzad
dc.contributor.authorAsghari Moghaddam, Samira
dc.date.accessioned2022-12-24T08:29:01Z
dc.date.available2022-12-24T08:29:01Z
dc.date.issued2022en_US
dc.identifier.urihttps://dspace.tbzmed.ac.ir:443/xmlui/handle/123456789/67926
dc.description.abstractBackground and Objectives: Currently, Artificial intelligence and convolutional neural networks (CNNs) have extensive medical applications as in detection and diagnosis of diseases and clinical disorders. The present study aimed to detect mandibular fractures on panoramic radiographs using CNN. Materials and Methods: This study evaluates 275 panoramic radiographs retrieved from the archives of the Oral and Maxillofacial Radiology Department of Tabriz School of Dentistry. From all of the radiographs, 124 have mandibular fractures and 151 have no fracture. First, the location of mandibular fractures is detected and annotated on the radiographs by oral and maxillofacial radiology resident, then all of the annotated images is re-examined by the oral and maxillofacial radiologist. Next, noise reduction was performed using the Chebyshev type II filter. To standardize the images, their primary resolution is modified and converted to 227 x 227. The 32 layer AlexNet CNN is then used for training and primary classification of images with and without mandibular fractures. 53 layer Alexnet CNNis subsequently used to detect the location of mandibular fractures on images. Of all images, 60% are randomly used for network training, 20% for validation, and 20% for final testing. The precision, recall, and F1 score are measured to assess the efficacy of this algorithm for detection of mandibular fractures. Results: The precision, recall, and F1 score of the algorithm for detection of mandibular farctures is found to be 0.968, 0.834, and 0.896, respectively. Conclusion: The suggested algorithm successfully detectsmandibular fractures on panoramic radiographs with high accuracy. So Models based on CNNs are expected to enhance the detection of mandibular fractures on panoramic radiographs.en_US
dc.language.isofaen_US
dc.publisherTabriz University of Medical Sciences, Faculty of Dentistryen_US
dc.relation.isversionofPersianen_US
dc.relation.isversionofhttps://dspace.tbzmed.ac.ir:443/xmlui/handle/123456789/67925
dc.subjectConvolution Neural Network; Mandibular Fracture; Panoramic Radiography; Image Processing; Deep Learningen_US
dc.titleAutomatic Detection of mandibular fractures in panoramic radiographs using a deep convolutional neural networken_US
dc.typeThesisen_US
dc.contributor.supervisorSaeedi Vahdat, Arman
dc.identifier.docno603919en_US
dc.identifier.callno68834*en_US
dc.contributor.departmentOral Radiologyen_US
dc.description.disciplineOral and maxillofacial Radiologyen_US
dc.description.degreeMScDen_US
dc.citation.reviewerJohari, Masoumeh
dc.citation.reviewerPourlak, Tannaz
dc.citation.reviewerHashemi, Mohsen
dc.citation.reviewerRazi, Sedigheh
dc.citation.reviewerTaghilou, Hamid


فایلهای درون آیتم

فایلهاسایزفرمتنمایش

هیچ فایل مرتبطی وجود ندارد

این آیتم در مجموعه های زیر مشاهده می شود

نمایش پرونده ساده آیتم