نمایش پرونده ساده آیتم

dc.contributor.authorSalehpour, F
dc.contributor.authorKhorramdin, A
dc.contributor.authorShokrollahi, H
dc.contributor.authorPezeshki, A
dc.contributor.authorMirzaei, F
dc.contributor.authorNader, ND
dc.date.accessioned2018-08-26T09:37:25Z
dc.date.available2018-08-26T09:37:25Z
dc.date.issued2014
dc.identifier.urihttp://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/58101
dc.description.abstractTwo different preparations of biocompatible magnetic nanoparticles (MNPs), both (MnFe2O4 and Mn0.91Zn0.09Fe2O4) coated with methoxy polyethylene glycol aldehyde (m-PEG-CHO) were prepared through coprecipitation method. The prepared powder was reanalyzed for material structure with an X-ray diffractometer (XRD) and for particle size using a transition electron microscope (TEM). Magnetic saturation (MS) and coercivity (HC) of the formed particles were examined by a vibrating sample magnetometer (VSM). Surface structure of the samples was characterized by Fourier transform infrared spectroscopy (FTIR). Biocompatible ferrofluids were intravenously injected into four rabbits. Then the magnetic resonance (MR) images of brain were obtained by magnetic resonance imaging (MRI) experiments before and after intravenous injection of ferrofluids. The MNPs demonstrate super paramagnetic behavior with a spinel structure measuring 30-40nm in size. Doping of these magnetite nanoparticles with zinc resulted in decreases in crystallite size from 24.23nm to 21.15nm, the lattice parameter from 8.45? to 8.43? and the coercivity from 41.20Oe to 13.07Oe. On the other hand, saturation magnetization increased from 50.12emu/g to 57.36emu/g following zinc doping. Image exposure analysis revealed that the reduction of MR signal intensity for zinc-doped magnetite nanoparticles was more than nondoped nanoparticles (shorter T2 relaxation time) thereby making the images darker. © 2014 by ASME.
dc.language.isoEnglish
dc.relation.ispartofJournal of Nanotechnology in Engineering and Medicine
dc.subjectBiocompatibility
dc.subjectCoercive force
dc.subjectCoprecipitation
dc.subjectCrystallite size
dc.subjectFourier transform infrared spectroscopy
dc.subjectMagnetic fluids
dc.subjectMagnetic resonance imaging
dc.subjectMagnetism
dc.subjectMagnetite
dc.subjectMagnetite nanoparticles
dc.subjectNanomagnetics
dc.subjectOre reduction
dc.subjectParticle size
dc.subjectResonance
dc.subjectSaturation magnetization
dc.subjectSynthesis (chemical)
dc.subjectZinc
dc.subjectCoprecipitation method
dc.subjectIntravenous injections
dc.subjectMagnetic nanoparti cles (MNPs)
dc.subjectMagnetic resonance imaging contrast agents
dc.subjectManganese ferrite nanoparticles
dc.subjectMethoxypolyethylene glycol
dc.subjectVibrating sample magnetometer
dc.subjectX ray diffractometers
dc.subjectNanoparticles
dc.subjectbiomaterial
dc.subjectcontrast medium
dc.subjectdimethyl sulfoxide
dc.subjectmacrogol
dc.subjectmagnetic nanoparticle
dc.subjectmanganese
dc.subjectmanganese ferrite
dc.subjectmethoxy polyethylene glycol aldehyde
dc.subjectnanoparticle
dc.subjectunclassified drug
dc.subjectzinc
dc.subjectzinc ion
dc.subjectanimal experiment
dc.subjectArticle
dc.subjectchemical reaction
dc.subjectcontrast enhancement
dc.subjectcontrolled study
dc.subjectcoprecipitation
dc.subjectcrystal structure
dc.subjectcrystallization
dc.subjectglycation
dc.subjectimage analysis
dc.subjectinfrared spectroscopy
dc.subjectmagnetic field
dc.subjectmagnetometer
dc.subjectmale
dc.subjectnonhuman
dc.subjectnuclear magnetic resonance imaging
dc.subjectparticle size
dc.subjectprecipitation
dc.subjectrabbit
dc.subjectsynthesis
dc.subjecttransmission electron microscopy
dc.subjectX ray diffraction
dc.titleSynthesis of Zn-doped manganese ferrite nanoparticles via coprecipitation method for magnetic resonance imaging contrast agent
dc.typeArticle
dc.citation.volume5
dc.citation.issue4
dc.citation.indexScopus
dc.identifier.DOIhttps://doi.org/10.1115/1.4029855


فایلهای درون آیتم

فایلهاسایزفرمتنمایش

هیچ فایل مرتبطی وجود ندارد

این آیتم در مجموعه های زیر مشاهده می شود

نمایش پرونده ساده آیتم