نمایش پرونده ساده آیتم

dc.contributor.authorMashinchian, O
dc.contributor.authorJohari-Ahar, M
dc.contributor.authorGhaemi, B
dc.contributor.authorRashidi, M
dc.contributor.authorBarar, J
dc.contributor.authorOmidi, Y
dc.date.accessioned2018-08-26T08:57:47Z
dc.date.available2018-08-26T08:57:47Z
dc.date.issued2014
dc.identifier10.15171/bi.2014.008
dc.identifier.urihttp://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/54614
dc.description.abstractIntroduction: A number of assays have so far been exploited for detection of cancer biomarkers in various malignancies. However, the expression of cancer biomarker(s) appears to be extremely low, therefore accurate detection demands sensitive optical imaging probes. While optical detection using conventional fluorophores often fail due to photobleaching problems, quantum dots (QDs) offer stable optical imaging in vitro and in vivo. Methods: In this review, we briefly overview the impacts of QDs in biology and its applications in bioimaging of malignancies. We will also delineate the existing obstacles for early detection of cancer and the intensifying use of QDs in advancement of diagnostic devices. Results: Of the QDs, unlike the II-VI type QDs (e.g., cadmium (Cd), selenium (Se) or tellurium (Te)) that possess inherent cytotoxicity, the I-III-VI 2 type QDs (e.g., AgInS2, CuInS2, ZnS-AgInS2) appear to be less toxic bioimaging agents with better control of band-gap energies. As highly-sensitive bioimaging probes, advanced hybrid QDs (e.g., QD-QD, fluorochrome-QD conjugates used for sensing through fluorescence resonance energy transfer (FRET), quenching, and barcoding techniques) have also been harnessed for the detection of biomarkers and the monitoring of delivery of drugs/genes to the target sites. Antibody-QD (Ab-QD) and aptamer-QD (Ap-QD) bioconjugates, once target the relevant biomarker, can provide highly stable photoluminescence (PL) at the target sites. In addition to their potential as nanobiosensors, the bioconjugates of QDs with homing devices have successfully been used for the development of smart nanosystems (NSs) providing targeted bioimaging and photodynamic therapy (PDT). Conclusion: Having possessed great deal of photonic characteristics, QDs can be used for development of seamless multifunctional nanomedicines, theranostics and nanobiosensors. é 2014 The Author(s).
dc.language.isoEnglish
dc.relation.ispartofBioImpacts
dc.subjectaptamer
dc.subjectcadmium
dc.subjectcopper
dc.subjectnanoconjugate
dc.subjectnanocrystal
dc.subjectquantum dot
dc.subjectselenium
dc.subjectsilver
dc.subjecttellurium
dc.subjecttumor marker
dc.subjectzinc
dc.subjectArticle
dc.subjectbiosensor
dc.subjectcell labeling
dc.subjectcell tracking
dc.subjectchemical composition
dc.subjectchemical modification
dc.subjectcytotoxicity
dc.subjectfluorescence
dc.subjectfluorescence resonance energy transfer
dc.subjecthuman
dc.subjectmalignant neoplastic disease
dc.subjectmolecular diagnosis
dc.subjectmolecular imaging
dc.subjectnanochemistry
dc.subjectnanomedicine
dc.subjectnanotoxicology
dc.subjectnonhuman
dc.subjectphotoluminescence
dc.subjectphysical chemistry
dc.subjectquantum yield
dc.subjectstructure analysis
dc.subjectsurface property
dc.subjectsynthesis
dc.titleImpacts of quantum dots in molecular detection and bioimaging of cancer
dc.typeArticle
dc.citation.volume4
dc.citation.issue3
dc.citation.spage149
dc.citation.epage166
dc.citation.indexScopus
dc.identifier.DOI10.15171/bi.2014.008


فایلهای درون آیتم

Thumbnail

این آیتم در مجموعه های زیر مشاهده می شود

نمایش پرونده ساده آیتم