نمایش پرونده ساده آیتم

dc.contributor.authorSokouti, M
dc.contributor.authorSokouti, B
dc.date.accessioned2018-08-26T08:35:25Z
dc.date.available2018-08-26T08:35:25Z
dc.date.issued2016
dc.identifier.urihttp://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/52645
dc.description.abstractCervical cancer cell images play an important part in diagnosing the cancer among the females worldwide. Existing noises, overlapping cells, mucus, blood and air artifacts in cervical cancer cell images makes their classification a hard task. It makes it difficult for both pathologists and intelligent systems to segment and classify them into normal, pre-cancerous and cancerous cells. However, true cell segmentation is needed for pathologists to make for accurate diagnosis. In this paper, a review of algorithms used for cervical cancer cell image classification is presented. This includes pre-processing steps (noise reduction and cell segmentation/without segmentation), feature extraction, and intelligent diagnosis systems and their evaluations. Finally, future research trends on cervical cell classification to achieve complete accuracy are described. é 2016 National Taiwan University.
dc.language.isoEnglish
dc.relation.ispartofBiomedical Engineering - Applications, Basis and Communications
dc.subjectArtificial intelligence
dc.subjectCells
dc.subjectClassification (of information)
dc.subjectCytology
dc.subjectDiseases
dc.subjectFeature extraction
dc.subjectImage segmentation
dc.subjectIntelligent systems
dc.subjectNoise abatement
dc.subjectArtificial intelligent
dc.subjectCancer
dc.subjectCervical cancer cells
dc.subjectCervical cells
dc.subjectIntelligent diagnosis system
dc.subjectNon-segmentation
dc.subjectPre-processing step
dc.subjectSystems applications
dc.subjectImage classification
dc.titleArtificial intelligent systems application in cervical cancer pathological cell image classification systems - A review
dc.typeLetter
dc.citation.volume28
dc.citation.issue2
dc.citation.indexScopus
dc.identifier.DOIhttps://doi.org/10.4015/S1016237216300017


فایلهای درون آیتم

فایلهاسایزفرمتنمایش

هیچ فایل مرتبطی وجود ندارد

این آیتم در مجموعه های زیر مشاهده می شود

نمایش پرونده ساده آیتم