نمایش پرونده ساده آیتم

dc.contributor.authorFrounchi, J
dc.contributor.authorKarimian, G
dc.contributor.authorKeshtkar, A
dc.date.accessioned2018-08-26T08:33:56Z
dc.date.available2018-08-26T08:33:56Z
dc.date.issued2009
dc.identifier.urihttp://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/52489
dc.description.abstractAn Artificial Neural Network was implemented on a FPGA to analyze electrical impedance spectroscopy (EIS) data taken from a patient bladder. Using this system, malignant areas from non-malignant areas in the urinary bladder of a patient can be separated very rapidly. Two variants of backpropagation algorithm were used to train a multilayer perceptron (MLP) neural network. By adjusting the ANN's parameters, the maximum error and error percentage of test phase in 300 epochs were reduced to 0.33297 and 0.39035%, respectively. The ANN architecture has been implemented on a Virtex-4 LX25 FPGA from Xilinx. The number of occupied slices on the FPGA is 10136 and the design covers 94% of the chip. آ© EuroJournals Publishing, Inc. 2009.
dc.language.isoEnglish
dc.relation.ispartofEuropean Journal of Scientific Research
dc.titleAn artificial neural network hardware for bladder cancer
dc.typeArticle
dc.citation.volume27
dc.citation.issue1
dc.citation.spage46
dc.citation.epage55
dc.citation.indexScopus


فایلهای درون آیتم

فایلهاسایزفرمتنمایش

هیچ فایل مرتبطی وجود ندارد

این آیتم در مجموعه های زیر مشاهده می شود

نمایش پرونده ساده آیتم