نمایش پرونده ساده آیتم

dc.contributor.authorNikitas, P
dc.contributor.authorPappa-Louisi, A
dc.contributor.authorTsoumachides, S
dc.contributor.authorJouyban, A
dc.date.accessioned2018-08-26T08:04:46Z
dc.date.available2018-08-26T08:04:46Z
dc.date.issued2012
dc.identifier.urihttp://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/49654
dc.description.abstractThree retention models for liquid chromatography are developed using principal component analysis (PCA). It is shown that they exhibit features similar to that of the model based on linear solvation energy relationship (LSER). However, the fitting performance of the PCA models is better than that of the LSER model, the performance of which can be considerably improved by the use of artificial neural networks. In addition, the possibility of using the proposed models as well as the LSER model to predict the retention times of solutes under chromatographic conditions at which these solutes have never been studied is also examined by means of three data sets of analytes consisting of non-polar compounds to polar compounds with a variety of functional groups. (c) 2012 Elsevier B.V. All rights reserved.
dc.language.isoEnglish
dc.relation.ispartofJOURNAL OF CHROMATOGRAPHY A
dc.subjectPCA
dc.subjectLSER
dc.subjectANN
dc.subjectRetention models
dc.subjectLiquid chromatography
dc.titleA principal component analysis approach for developing retention models in liquid chromatography
dc.typeArticle
dc.citation.volume1251
dc.citation.spage134
dc.citation.epage140
dc.citation.indexWeb of science
dc.identifier.DOIhttps://doi.org/10.1016/j.chroma.2012.06.049


فایلهای درون آیتم

فایلهاسایزفرمتنمایش

هیچ فایل مرتبطی وجود ندارد

این آیتم در مجموعه های زیر مشاهده می شود

نمایش پرونده ساده آیتم