نمایش پرونده ساده آیتم

dc.contributor.authorMajd, MH
dc.contributor.authorAsgari, D
dc.contributor.authorBarar, J
dc.contributor.authorValizadeh, H
dc.contributor.authorKafil, V
dc.contributor.authorCoukos, G
dc.contributor.authorOmidi, Y
dc.date.accessioned2018-08-26T08:03:29Z
dc.date.available2018-08-26T08:03:29Z
dc.date.issued2013
dc.identifier.urihttp://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/49229
dc.description.abstractWe report on the synthesis of bifunctional mitoxantrone (MTX)-grafted magnetic nanoparticles (MNPs) modified by dopamine-polyethylene glycol-folic acid (DPA-PEG-FA) for targeted imaging and therapy of cancer. MNPs (similar to 7-10 nm) were synthesized using the thermal decomposition reaction of Fe(acac)(3). Bromoacetyl (BrAc) terminal polyethylene glycol dopamine (DPA-PEG-BrAc) was synthesized and treated with ethylene diamine to form bifunctional PEG moiety containing dopamine at one end and amino group at the other end (i.e. DPA-PEG-NH2). It was then reacted with Fe3O4 nanoparticles (NPs) to form Fe3O4-DPA-PEG-NH2 NPs. The activated folic acid (FA) was chemically coupled to Fe3O4-DPA-PEG-NH2, forming Fe3O4-DPA-PEG-FA. MTX was then conjugated to Fe3O4-DPA-PEG-FA, forming Fe3O4-DPA-PEG-FA-MTX. Physicochemical characteristics of the engineered MNPs were determined. The particle size analysis and electron microscopy showed an average size of similar to 35 nm for Fe3O4-DPA-PEG-FA-MTX NPs with superparamagnetic behavior. FT-IR spectrophotometry analysis confirmed the conjugation of FA and MTX onto the MNPs. Fluorescence microscopy, cytotoxicity assay and flow cytometry analysis revealed that the engineered Fe3O4-DPA-PEG-FA-MTX NPs were able to specifically bind to and significantly inhibit the folate receptor (FR)-positive MCF-7 cells, but not the FR-negative A549 cells. Based upon these findings, we suggest the Fe3O4-DPA-PEG-FA-MTX NPs as an effective multifunctional-targeted nanomedicine toward simultaneous imaging and therapy of FR-positive cancers.
dc.language.isoEnglish
dc.relation.ispartofJOURNAL OF DRUG TARGETING
dc.subjectCancer
dc.subjectcancer targeting
dc.subjectdrug delivery
dc.subjectdrug targeting
dc.subjectfolate
dc.subjectmitoxantrone
dc.subjectnanomedicine
dc.subjecttheranostics
dc.titleSpecific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles
dc.typeArticle
dc.citation.volume21
dc.citation.issue4
dc.citation.spage328
dc.citation.epage340
dc.citation.indexWeb of science
dc.identifier.DOIhttps://doi.org/10.3109/1061186X.2012.750325


فایلهای درون آیتم

فایلهاسایزفرمتنمایش

هیچ فایل مرتبطی وجود ندارد

این آیتم در مجموعه های زیر مشاهده می شود

نمایش پرونده ساده آیتم