Show simple item record

dc.contributor.authorBarzegar-Jalali, M
dc.contributor.authorRahimpour, E
dc.contributor.authorMartinez, F
dc.contributor.authorJouyban, A
dc.date.accessioned2018-08-26T06:34:53Z
dc.date.available2018-08-26T06:34:53Z
dc.date.issued2018
dc.identifier.urihttp://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/44088
dc.description.abstractThe aim of this study is to develop the trained versions of Yalkowsky and Jouyban-Acree models for the prediction of drug solubility in the binary aqueous mixtures of methanol (MeOH) at various temperatures. To provide a full predictive model, the Abraham solvation parameters of solutes are combined with the proposed models. The solubility data of 41 drug and/or drug-like compounds with different polarities and structural features covering the total drug-like space are fitted by these models. The generally trained models provide reasonable estimation of the solubility behavior of drugs and can be helpful in the pharmaceutical industry. (C) 2018 Published by Elsevier B.V.
dc.language.isoEnglish
dc.relation.ispartofJOURNAL OF MOLECULAR LIQUIDS
dc.subjectSolubility prediction
dc.subjectAbraham salvation parameters
dc.subjectJouyban-Acree model
dc.subjectYalkowsky model
dc.subjectMethanol plus water
dc.titleGenerally trained models to predict drug solubility in methanol plus water mixtures
dc.typeArticle
dc.citation.volume264
dc.citation.spage631
dc.citation.epage644
dc.citation.indexWeb of science
dc.identifier.DOIhttps://doi.org/10.1016/j.molliq.2018.05.084


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record