Show simple item record

dc.contributor.authorMesbahi, A
dc.contributor.authorZakariaee, SS
dc.date.accessioned2018-08-26T06:06:04Z
dc.date.available2018-08-26T06:06:04Z
dc.date.issued2013
dc.identifier.urihttp://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/41929
dc.description.abstractIn radiation therapy with orthovoltage units, the tube design has a crucial effect on its dosimetric features.In this study, the effect of anode angle on photon beam spectra, depth dose and photon fluence per initial electron was studied for a commercial orthovoltage unit of X-RAD320 biological irradiator.The MCNPX MC code was used for modeling in the current study. We used the Monte Carlo method to model the X-RAD320 X-ray unit based on the manufacturer provided information. The MC model was validated by comparing the MC calculated photon beam spectra with the results of SpekCalc software. The photon beam spectra were calculated for anode angles from 15 to 35 degrees. We also calculated the percentage depth doses for some angles to verify the impact of anode angle on depth dose. Additionally, the heel effect and its relation with anode angle were studied for X-RAD320 irradiator.Our results showed that the photon beam spectra and their mean energy are changed significantly with anode angle and the optimum anode angle of 30 degrees was selected based on less heel effect and appropriate depth dose and photon fluence per initial electron.It can be concluded that the anode angle of 30 degrees for X-RAD320 unit used by manufacturer has been selected properly considering the heel effect and dosimetric properties.
dc.language.isoEnglish
dc.relation.ispartofReports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology
dc.titleEffect of anode angle on photon beam spectra and depth dose characteristics for X-RAD320 orthovoltage unit.
dc.typearticle
dc.citation.volume18
dc.citation.issue3
dc.citation.spage148
dc.citation.epage52
dc.citation.indexPubmed
dc.identifier.DOIhttps://doi.org/10.1016/j.rpor.2012.12.001


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record