• English
    • Persian
    • English
    • Persian
  • English 
    • English
    • Persian
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis, characterization and in vitro anti-tumoral evaluation of Erlotinib-PCEC nanoparticles.

Thumbnail
Date
2014
Author
Barghi, L
Asgari, D
Barar, J
Nakhlband, A
Valizadeh, H
Metadata
Show full item record
Abstract
Development of a nanosized polymeric delivery system for erlotinib was the main objective of this research.Poly caprolactone-polyethylene glycol-polycaprolactone (PCEC) copolymers with different compositions were synthesized via ring opening polymerization. Formation of triblock copolymers was confirmed by HNMR as well as FT-IR. Erlotinib loaded nanoparticles were prepared by means of synthesized copolymers with solvent displacement method.Physicochemical properties of obtained polymeric nanoparticles were dependent on composition of used copolymers. Size of particles was decreased with decreasing the PCL/PEG molar ratio in used copolymers. Encapsulation efficiency of prepared formulations was declined by decreasing their particle size. Drug release behavior from the prepared nanoparticles exhibited a sustained pattern without a burst release. From the release profiles, it can be found that erlotinib release rate from polymeric nanoparticles is decreased by increase of CL/PEG molar ratio of prepared block copolymers. Based on MTT assay results, cell growth inhibition of erlotinib has a dose and time dependent pattern. After 72 hours of exposure, the 50% inhibitory concentration (IC50) of erlotinib hydrochloride was appeared to be 14.8 ?M.From the obtained results, it can be concluded that the prepared PCEC nanoparticles in this study might have the potential to be considered as delivery system for erlotinib.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/41204
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV