• English
    • Persian
    • English
    • Persian
  • English 
    • English
    • Persian
    • English
    • Persian
  • Login
View Item 
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
  •   KR-TBZMED Home
  • TBZMED Published Academics Works
  • Published Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel polyacrylate-based cationic nanoparticles for survivin siRNA delivery combined with mitoxantrone for treatment of breast cancer.

Thumbnail
Date
2016
Author
Arami, S
Mahdavi, M
Rashidi, MR
Fathi, M
Hejazi, MS
Samadi, N
Metadata
Show full item record
Abstract
As a gene delivery method in breast cancer therapy, knocking down the undesired genes in the cancerous cells would be promising. Inhibitors of Apoptosis Protein (IAP) family genes are some of the genes whose responsibility is inhibition of apoptosis in cells. Silencing these genes seems to be helpful directing the tumor cells to death. siRNA sequence designed against survivin anti-apoptotic gene can play this role if carried to the cytoplasm. Here we prepared a positive charged biocompatible nano-sized particle made up of a Fe3O4 core covered respectively by polyacrylate (PA) and polyethyleneimine (PEI) layer, which could successfully deliver the siRNA into the MCF-7آ cells. The particle structure was checked and having less than 50آ nm diameter in size, positive charge and, safety towards MCF-7آ cells besides being able to form nanoplexes with the siRNA strand helps it entering into the biologic assays part. The siRNA delivery evaluated via flowcytometry. Apoptosis induction was determined by DAPI staining. The efficiency of survivin gene knockdown was evaluated in mRNA and protein levels using Real time PCR and western blotting methods. Overall, the Fe3O4-PA-PEI nanoparticles can deliver siRNA effectively into the cytoplasm of the MCF-7 breast cancer cells and induce apoptosis.
URI
http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/39605
Collections
  • Published Articles

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KR-TBZMEDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Knowledge repository of Tabriz University of Medical Sciences using DSpace software copyright © 2018  HTMLMAP
Contact Us | Send Feedback
Theme by 
Atmire NV