نمایش پرونده ساده آیتم

dc.contributor.authorKakehbaraei, S
dc.contributor.authorSeyedarabi, H
dc.contributor.authorZenouz, AT
dc.date.accessioned2018-08-26T04:52:49Z
dc.date.available2018-08-26T04:52:49Z
dc.identifier.urihttp://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/37702
dc.description.abstractTeeth segmentation is an important task in computer-aided procedures and clinical diagnosis. In this paper, we propose an accurate and robust algorithm based on watershed and morphology operators for teeth and pulp segmentation and a new approach for enamel segmentation in cone-beam computed tomography (CBCT) images. Proposed method consists of five steps: acquiring appropriate CBCT image, image enhancement, teeth segmentation using the marker-controlled watershed (MCW), enamel segmentation by global threshold, and finally, utilizing the MCW for pulp segmentation. Proposed algorithms evaluated on a dataset consisting 69 patient images. Experimental results show a high accuracy and specificity for teeth, enamel, and pulp segmentation. MCW algorithm and local threshold are accurate and robust approaches to segment tooth, enamel, and pulp tissues. Methods overcome the over-segmentation phenomenon and artifacts reduction.
dc.language.isoEnglish
dc.relation.ispartofJournal of medical signals and sensors
dc.titleDental Segmentation in Cone-beam Computed Tomography Images Using Watershed and Morphology Operators.
dc.typearticle
dc.citation.volume8
dc.citation.issue2
dc.citation.spage119
dc.citation.epage124
dc.citation.indexPubmed


فایلهای درون آیتم

فایلهاسایزفرمتنمایش

هیچ فایل مرتبطی وجود ندارد

این آیتم در مجموعه های زیر مشاهده می شود

نمایش پرونده ساده آیتم